Technology

Smart bandwidth key to upcoming surge in wireless device connectivity

Wireless communication has been a key facilitator of most recent and pending technologies.  Smart bandwidth usage is a prerequisite if society is to benefit from the surge in wireless devices over the next few years.

Self driving cars, advanced robotics and a broader Internet of Things (IoT) are subject to imminent delivery whilst calls, texts, Uber and mobile device video streaming are already embedded in societal habits.

All are facilitated by wireless technology.  In the case of IoT, it’s estimated that 21 billion connected devices will be operational within the next year.

However, there is a likely problem.  Our airwaves are going to be overloaded as this wireless device use grows.  Radio spectrum has been carved up amongst the various use cases.  However, the holders of various radio spectrum allocations are not utilizing the resource efficiently.

Mobile spectrum assignments have doubled over the last decade and with that, there is a growing recognition of the need to make more spectrum available, providing for greater connectivity.

Rarely behind the curve, the Defense Advanced Research Projects Agency (DARPA) has recognized the problem and as a consequence, the agency has been running a competition to find a better way to allocate spectrum.

The Spectrum Collaboration Challenge (SCC) aims to provide for the exponential growth in wireless devices in terms of both military and civilian use.

Collaborative AI The Solution?

The finalists of the competition gathered at Mobile World Congress in Los Angeles last week.  The event host confirmed that “competitors packed 3.5 times more wireless signals into the spectrum than we’re capable of today”.

It’s early days as this solution is likely to need further testing but this was the first time that “we’ve seen AI enabled radios collaborating autonomously – unlocking the true potential of the RF spectrum”.

This was carried out using DARPA’s wireless emulation testbed – Colosseum.  Additional testing will be required in the wild before this approach emerges as a worthy candidate to resolve the spectrum allocation issue but the initial signs are encouraging.

A working group of the Networking and Information Technology Research & Development (NITRD) program also considered the use of AI for wireless spectrum allocation at a workshop held in New York in August.

The overarching view is that static spectrum allocation is inefficient whereas AI can enable dynamic allocation – making far greater use of the available spectrum.

In advance of the workshop, the National Science Foundation (NSF) underscored the importance of efficient wireless spectrum management as key “to maintain our Nation’s global leadership in 5G technologies and deployment”.

Telecoms industry approach

The Dynamic Spectrum Alliance (DSA) – a cross industry collaboration within the telecoms sector to address the issue – has been established.  It’s not just in terms of new technologies that spectrum allocation comes into play.

According to a DSA press release earlier this year, dynamic spectrum sharing will play a critical role in connecting millions of people in Africa to the internet.

Swedish multinational telecoms company, Ericsson has developed its own dynamic spectrum sharing (DSS) technology – facilitating a mobile operator in running 4G and 5G wireless communications on the same spectrum band.

At the turn of the millennium, Bluetooth emerged and caused mayhem due to interference with Wi-Fi routers.  Engineers ultimately overcame the difficulty.

If society is to benefit from all we’ve been promised in terms of the much vaunted arrival of IoT, engineers working on the broader radio spectrum will need to match that feat.

For now at least, the use of AI seems like a promising step forward in using the resource more efficiently, thus enabling a much more interconnected future.

Pat Rabbitte

Pat is a writer from the West of Ireland - currently living and working in Medellín, Colombia. He has always had an inquiring mind when it comes to new technology. His discovery of Bitcoin back in 2013 slowly led to a realisation of the implications of the underlying tech. As a consequence, Pat’s passion for blockchain technology has led him to focus his writing on the subject.

Recent Posts

AI reasoning and the infinite puzzle of Borges’ Library of Babel

Many people have the intuition that an LLM (Large Language Model, e.g. ChatGPT) doesn't really understand…

3 days ago

UK’s DARPA-inspired ARIA opens ‘Engineering Ecosystem Resilience’ research opportunity

ARIA's opportunity space for engineering ecosystem resilience follows a global trend of public and private…

4 days ago

Healthcare providers now have unprecedented data insights into the patient journey as PurpleLab® acquires KAID Health

In the U.S., we’re seeing an incredible growth of the healthcare analytics market, with the…

4 days ago

First Financial Federal Credit Union prioritizes empathy with Ribbon partnership for inheritance claims 

When our loved ones pass on, it can be one of the most traumatic events…

4 days ago

Tackling antimicrobial resistance with new cleaning protocols

When we hear the word pandemic, our mind is likely to jump to the events…

5 days ago

Peru makes history: defeats Japan to claim Pokémon Unite World Championship title

Team Peru Unite made history in Anaheim, California by defeating Japan’s powerhouse Zeta Division 3-1…

5 days ago